No. | C0 | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|---|
Speed [m/s] | \(2.017\) | |||||
Froude number (\(F_r\)) | 0.261 | |||||
Reynolds number (\(R_e\)) | \( 1.074 \times 10^7\) | |||||
Wave length: \(\lambda\) [m] | 0.0 | 3.949 | 5.164 | 6.979 | 8.321 | 11.840 |
Wave height: \(H_s\) [m] | 0.0 | 0.062 | 0.078 | 0.123 | 0.149 | 0.196 |
\(\zeta_s\) : wave amplitude, \(\zeta_s = \displaystyle{\frac{H_s}{2}}\)
\(k\) : wave number, \(\displaystyle{k=\frac{2 \pi}{\lambda}}\)
Note: The heave and pitch motions are given at the center of gravity and the wave crest is at FP when \(t=0\).
Not yet available.
Table/Figure# | Items | EFD Data | Submission Instruction | ||
---|---|---|---|---|---|
Data file | Image | Image files | Sample + Tecplot layout file | ||
2.10-1 | Comparison of:
|
Refer to sample file for details | Filename: |
[Identifier]_6conditions_2-10_20150914.xlsx (updated on September, 14, 2015) |
|
2.10-2-C1 | Time histories of total resistance coefficient (\(C_T\)), heave motion (\(z / \zeta_s\)) and pitch angle (\(\theta / k \zeta_s \)), which are reconstructed from the Fourier Series (not the raw signals) (test condition 1) |
Refer to sample file for details | Filename: [Identifier]_CT_T-his_C1_2-10.png ( for \(C_T\) ) [Identifier]_heave_T-his_C1_2-10.png ( for \(z / \zeta_s \) ) [Identifier]_pitch_T-his_C1_2-10.png ( for \(\theta / k \zeta_s \) ) X-axis range: \( 0.0 \le \displaystyle{\frac{t}{T_e}} \le 1.0 \) Y-axis range: \( -0.003 \le C_T \le \color{blue}0.012 \) \( \color{blue}-1.0 \color{red} \le \displaystyle{\frac{z}{\zeta_s}} \le 0.5 \) \( \color{blue}-0.15 \color{red} \le \displaystyle{\frac{\theta}{k \zeta_s}} \le 0.05 \) Style: CFD solid line EFD open circles |
Case2.10-2.zip (updated on September, 14, 2015) |
|
2.10-2-C2 | Time histories of total resistance coefficient (\(C_T\)), heave motion (\(z / \zeta_s\)) and pitch angle (\(\theta / k \zeta_s \)), which are reconstructed from the Fourier Series (not the raw signals) (test condition 2) |
Refer to sample file for details | Filename: [Identifier]_CT_T-his_C2_2-10.png ( for \(C_T\) ) [Identifier]_heave_T-his_C2_2-10.png ( for \(z / \zeta_s \) ) [Identifier]_pitch_T-his_C2_2-10.png ( for \(\theta / k \zeta_s \) ) X-axis range: \( 0.0 \le \displaystyle{\frac{t}{T_e}} \le 1.0 \) Y-axis range: \( -0.008 \le C_T \le \color{blue}0.016 \) \( \color{blue} -1.0 \color{red} \le \displaystyle{\frac{z}{\zeta_s}} \le 0.5 \) \( -0.5 \le \displaystyle{\frac{\theta}{k \zeta_s}} \le 0.5 \) Style: CFD solid line EFD open circles |
||
2.10-2-C3 | Time histories of total resistance coefficient (\(C_T\)), heave motion (\(z / \zeta_s\)) and pitch angle (\(\theta / k \zeta_s \)), which are reconstructed from the Fourier Series (not the raw signals) (test condition 3) |
Refer to sample file for details | Filename: [Identifier]_CT_T-his_C3_2-10.png ( for \(C_T\) ) [Identifier]_heave_T-his_C3_2-10.png ( for \(z / \zeta_s \) ) [Identifier]_pitch_T-his_C3_2-10.png ( for \(\theta / k \zeta_s \) ) X-axis range: \( 0.0 \le \displaystyle{\frac{t}{T_e}} \le 1.0 \) Y-axis range: \( -0.010 \le C_T \le 0.020 \) \( -2.0 \le \displaystyle{\frac{z}{\zeta_s}} \le 2.0 \) \( -2.0 \le \displaystyle{\frac{\theta}{k \zeta_s}} \le 2.0 \) Style: CFD solid line EFD open circles |
||
2.10-2-C4 | Time histories of total resistance coefficient (\(C_T\)), heave motion (\(z / \zeta_s\)) and pitch angle (\(\theta / k \zeta_s \)), which are reconstructed from the Fourier Series (not the raw signals) (test condition 4) |
Refer to sample file for details | Filename: [Identifier]_CT_T-his_C4_2-10.png ( for \(C_T\) ) [Identifier]_heave_T-his_C4_2-10.png ( for \(z / \zeta_s \) ) [Identifier]_pitch_T-his_C4_2-10.png ( for \(\theta / k \zeta_s \) ) X-axis range: \( 0.0 \le \displaystyle{\frac{t}{T_e}} \le 1.0 \) Y-axis range: \( -0.020 \le C_T \le 0.040 \) \( -2.0 \le \displaystyle{\frac{z}{\zeta_s}} \le 2.0 \) \( -2.0 \le \displaystyle{\frac{\theta}{k \zeta_s}} \le 2.0 \) Style: CFD solid line EFD open circles |
||
2.10-2-C5 | Time histories of total resistance coefficient (\(C_T\)), heave motion (\(z / \zeta_s\)) and pitch angle (\(\theta / k \zeta_s \)), which are reconstructed from the Fourier Series (not the raw signals) (test condition 5) |
Refer to sample file for details | Filename: [Identifier]_CT_T-his_C5_2-10.png ( for \(C_T\) ) [Identifier]_heave_T-his_C5_2-10.png ( for \(z / \zeta_s \) ) [Identifier]_pitch_T-his_C5_2-10.png ( for \(\theta / k \zeta_s \) ) X-axis range: \( 0.0 \le \displaystyle{\frac{t}{T_e}} \le 1.0 \) Y-axis range: \( -0.040 \le C_T \le 0.050 \) \( -2.0 \le \displaystyle{\frac{z}{\zeta_s}} \le 2.0 \) \( -2.0 \le \displaystyle{\frac{\theta}{k \zeta_s}} \le 2.0 \) Style: CFD solid line EFD open circles |
Note: a positive (+) sinkage value is defined upwards and a positive (+) trim value is defined bow up.
Submission Instructions:
All quantities are non-dimensionalized by denstiy of water (\(\rho\)), ship speed (\(U\)), and length between parpendiculars (\(L_{PP}\)): \begin{align*} F_r = \frac{U}{\sqrt{g \cdot L_{PP}}}, \quad R_e = \frac{U \cdot L_{PP}}{\nu} \tag{1} \end{align*} where \(g\) is the gravitational acceleration and \(\nu\) is the kinematic viscosity.
As a time reference, incident wave height at FP of the ship is defined as
\begin{align*}
\zeta_T (t) = \frac{\zeta_s}{L_{PP}} \cos ( 2 \pi f_e t + \gamma_I ) \tag{3}
\end{align*}
\(\gamma_I\) is the initial phase and is equal to be zero from the present definition of \(t=0\) below.
Fourier series for time history \(X\) (\(X=C_T\), \(z\), \(\theta\), and \(\zeta_T\)) are determined as follows:
\begin{align*}
X_F (t) &= \frac{X_0}{2} + \sum_{n=1}^N X_n \cos ( 2 n \pi f_e t + \Delta \gamma_n ) \tag{4}\\
\Delta \gamma_n &= \gamma_n - \gamma_I \tag{5}\\
a_n &= \frac{2}{T_e} \int_0^{T_e} X(t) \cos ( 2 n \pi f_e t ) dt \quad ( n = 0, 1, 2, \cdots ) \tag{6}\\
b_n &= \frac{2}{T_e} \int_0^{T_e} X(t) \sin ( 2 n \pi f_e t ) dt \quad ( n = 1, 2, \cdots ) \tag{7}\\
X_n &= \sqrt{ {a_n}^2 + {b_n}^2 } \tag{8}\\
\gamma_n &= tan^{-1} \left( - \frac{b_n}{a_n} \right) \tag{9}
\end{align*}
\(X_n\) is n-th harmonic amplitude and \(\gamma_I\) is the corresponding phase.