|Home|Description |Geometry and Conditions | Instructions to participants|

Case 2.1

Conditions:

References:

Not yet available.

Requested computations:

Table/Figure# Items EFD Data Submission Instruction
Data file Image Image files Sample + Tecplot layout file
2.1-1 V&V of resistances, sinkage(\(\sigma\)),
and trim(\(\tau\))
Refer to sample file for detail Filename:
[Identifier]_6V&V_2-1.xls
(MS Excell file)
[Identifier]_6V&V_2.1.xls
2.1-2 Coefficients of total resistance (\(C_T\)) versus \(F_r\)
(results and uncertainties)
vary_Fr_2-1.xls Refer to sample file for detail Filename:
[Identifier]_CT_Fr_2-1.jpg
Axis:
\(0.09 \le F_r \le 0.30 \)
\(2.8 \le C_T \times 10^3 \le 5.2 \)
Line style:
\(C_T \times 10^3\):
CFD solid line with open left-triangles;
EFD solid diamonds
Uncertainty bars:
\(\pm U_D\) horizontal short bars
\(\pm U_{SN}\) horizontal long bars
[Identifier]_CT_Fr_2-1.jpg
[Identifier]_CT_Fr_2-1.lpk
2.1-3 Sinkage (\(\sigma\)) versus \(F_r\)
(results and uncertainties)
vary_Fr_2-1.xls Refer to sample file for detail Filename:
[Identifier]_sinkage_Fr_2-1.jpg
Axis:
\(0.09 \le F_r \le 0.30 \)
\(-2.8 \le \sigma \times 10^2 \le 0.4 \)
Line style:
\(\sigma \times 10^2\):
CFD solid line with open up-triangles;
EFD solid squares
Uncertainty bars:
\(\pm U_D\) horizontal short bars
\(\pm U_{SN}\) horizontal long bars
[Identifier]_sinkage_Fr_2-1.jpg
[Identifier]_sinkage_Fr_2-1.lpk
2.1-4 Trim (\(\tau\)) versus \(F_r\)
(results and uncertainties)
vary_Fr_2-1.xls Refer to sample file for detail Filename:
[Identifier]_trim_Fr_2-1.jpg
Axis:
\(0.09 \le F_r \le 0.30 \)
\(-0.28 \le \tau^\circ \le 0.04 \)
Line style:
\(\tau^\circ\):
CFD solid line with open circles;
EFD solid down triangles
Uncertainty bars:
\(\pm U_D\) horizontal short bars
\(\pm U_{SN}\) horizontal long bars
[Identifier]_trim_Fr_2-1.jpg
[Identifier]_trim_Fr_2-1.lpk

Note: a positive (+) sinkage value is defined upwards and a positive (+) trim value is defined bow up.

Submission Instructions:

All quantities are non-dimensionalized by denstiy of water (\(\rho\)), ship speed (\(U\)), and length between parpendiculars (\(L_{PP}\)): \begin{align*} F_r = \frac{U}{\sqrt{g \cdot L_{PP}}}, \quad R_e = \frac{U \cdot L_{PP}}{\nu} \end{align*} where \(g\) is the gravitational acceleration and \(\nu\) is the kinematic viscosity.

All CFD predicted force coefficients should be reported using the provided wetted surface area at rest (\(S_0\)).

Force coefficients are defined as follows: \begin{align*} C_T = \frac{R_T}{ \frac{1}{2} \rho U^2 S_0 }, \quad C_F = \frac{R_F}{ \frac{1}{2} \rho U^2 S_0 }, \quad C_P = \frac{R_P}{ \frac{1}{2} \rho U^2 S_0 }%, \quad %K_T = \frac{T}{ \rho n^2 {D_P}^4 }, \quad %K_Q = \frac{Q}{ \rho n^2 {D_P}^5 } \end{align*}