Case 1.3a (NMRI)

Conditions:

• Towing in calm water condition
• Without rudder, without propeller
• Without ESD
• $FR_{Z \theta}$
• $R_{e}=7.46 \times 10^6, F_r=0.142$
• $L_{PP} = 7.000$ [m], $U=1.179$ [m/s]
• $\rho = 998.2$ [kg/m3], $\nu = 1.107 \times 10^{-6}$ [m2/s]
• $g = 9.80$ [m/s2]

References:

Not yet available.

Requested computations:

Table/Figure# Items EFD Data Submission Instruction
Data + Tecplot layout file Image Image files Sample + Tecplot layout file
1.3a-1 $u, v, w$ contours and cross flow vectors at $x/L_{PP} = 0.9625$ (SS 3/8) Refer to sample file for detail <Common>
Axis:
$-0.035 < Y/L_{PP} < 0.035$
$-0.065 < z/L_{PP} < 0.005$
Aspect ratio = 1:1
Frame line of SS 3/8 should be drawn.

<Contours>
Filename:
[Identifier]_S2-woDuct-woProp_U_1-3a.png (for $u / U$ )
[Identifier]_S2-woDuct-woProp_V_1-3a.png (for $v / U$ )
[Identifier]_S2-woDuct-woProp_W_1-3a.png (for $w / U$ )
[Identifier]_S2-woDuct-woProp_OMGX_1-3a.png (for $\displaystyle{\omega_x \cdot \frac{L_{PP}}{U} }$ )
Contour style: lines
Line Style: solid positive, dashed negative
Contour intervals:
$\Delta (u/U) = 0.1, \Delta (v/U) = 0.1, \Delta (w/U) = 0.1$ and $\Delta \omega_x \cdot \displaystyle{\frac{L_{PP}}{U}} =20$

<Cross flow vectors>
Filename:
[Identifier]_S2-woDuct-woProp_VW_1-3a.png
Vector length: $0.004$ [Magnitude/Grid Units]
Length of Reference vector: 1.0
Case1.3a_SPIV.zip
Contours of $\omega_x$ is not included.(Oct. 08, 2015)
1.3a-2 $u, v, w$ contours and cross flow vectors at $x/L_{PP} = 0.9843$
(between duct and propeller, 110[mm] ahead from AP)
Refer to sample file for detail <Common>
Axis and Aspect ratio are same as Case1.3a-1

<Contours>
Filename:
[Identifier]_S4-woDuct-woProp_U_1-3a.png (for $u / U$ )
[Identifier]_S4-woDuct-woProp_V_1-3a.png (for $v / U$ )
[Identifier]_S4-woDuct-woProp_W_1-3a.png (for $w / U$ )
[Identifier]_S4-woDuct-woProp_OMGX_1-3a.png (for $\displaystyle{\omega_x \cdot \frac{L_{PP}}{U} }$ )
The others are same as Case1.3a-1

<Cross flow vectors>
Filename:
[Identifier]_S4-woDuct-woProp_VW_1-3a.png
The others are same as Case1.3a-1
1.3a-3 $u, v, w$ contours and cross flow vectors at $x/L_{PP} = 1.0000$ (AP) Refer to sample file for detail <Common>
Axis and Aspect ratio are same as Case1.3a-1

<Contours>
Filename:
[Identifier]_S7-woDuct-woProp_U_1-3a.png (for $u / U$ )
[Identifier]_S7-woDuct-woProp_V_1-3a.png (for $v / U$ )
[Identifier]_S7-woDuct-woProp_W_1-3a.png (for $w / U$ )
[Identifier]_S7-woDuct-woProp_OMGX_1-3a.png (for $\displaystyle{\omega_x \cdot \frac{L_{PP}}{U} }$ )
The others are same as Case1.3a-1

<Cross flow vectors>
Filename:
[Identifier]_S7-woDuct-woProp_VW_1-3a.png
The others are same as Case1.3a-1
1.3a-4 Wave elevation contours Refer to sample file for detail Axis:
$-0.25 \lt x/L_{PP} \lt 1.25$
$-0.5 \lt y/L_{PP} \lt 0.0$
Filename: [Identifier]_fs_1-3a.png
Contour level : $-0.008 \lt z/L_{PP} \lt 0.012$
Contour interval : $\Delta z/L_{PP}=0.0005$, #level=41
Contour style : positive solid line, negative dashed line
Case_1.3a-4.zip
1.3a-5 Wave profile Refer to sample file for detail Axis:
$-0.5 \lt x/L_{PP} \lt 2.0$
$-0.008 \lt z/L_{PP} \lt 0.012$
Filename: [Identifier]_wave_profile_1-3a.png
Line style : CFD solid line, EFD open circles
Case_1.3a-5.zip
1.3a-6 Longitudinal wave cut at $y/L_{PP} = -0.1043$ Refer to sample file for detail Axis:
$-0.5 \lt x/L_{PP} \lt 2.0$
$-0.004 \lt z/L_{PP} \lt 0.002$
Filename: [Identifier]_wave_cut_y-1043_1-3a.png
Line style : CFD solid line, EFD open circles
Case_1.3a-6and7.zip
1.3a-7 Longitudinal wave cut at $y/L_{PP} = -0.1900$ Refer to sample file for detail Axis:
$-0.5 \lt x/L_{PP} \lt 2.0$
$-0.002 \lt z/L_{PP} \lt 0.002$
Filename: [Identifier]_wave_cut_y-1900_1-3a.png
Line style : CFD solid line, EFD open circles
1.3a-8 Grid density distribution along the waterline, and in transverse and vertical directions at mid-ship Refer to sample file for detail

File name: [Identifier]_grid_1_3a.png
< Item 1 >
Number of cells per fundamental wave length in longitudinal direction at $y / L_{PP} = -0.1043$ at the still water plane level:
$ppwl = \displaystyle{\frac{2 \pi {F_n}^2}{\Delta x / L_{PP}}}$ vs. $x / L_{PP}$.
Axis:
$-0.25 \lt x/L_{PP} \lt 1.25$
$0 \lt ppwl \lt 200$
Line style : solid line

< Item 2 >
Number of cells per fundamental wave length in transverse direction at midship, along y axis and at the still water plane level:
$ppwl = \displaystyle{\frac{2 \pi {F_n}^2}{\Delta y / L_{PP}}}$ vs. $y / L_{PP}$.
Axis:
$-0.25 \lt y/L_{PP} \lt 1.25$
$0 \lt ppwl \lt 200$
Change sign of the grid y-coordinate if necessary
Line style : dashed line

< Item 3 >
Nondimensionalised cell size in vertical direction at midship and $y/L_{PP}=-0.1043$, along z axis:
$\Delta z / L_{PP}$ vs. $z / L_{PP}$.
Axis:
$0 \lt \Delta z/L_{PP} \lt 0.002$ (adjust if exceeded)
$-0.01 \lt z/L_{PP} \lt 0.01$
Axis labels on the opposite side of the previous items.
Line style : dashed-dotted line

Case_1.3a-8.zip
1.3a-9 Vortex core analysis
N/A Refer to PDF instruction (Tokyo_2015_Vortex_Analysis.pdf) in Case_1.3a-9_20151015.zip for detail.
36 image files (red-letter in the instruction) and 2 Tecplot™ data files (blue-letter in the instruction) are requested to be submitted.
Please archive all image and data files to a zip file named:
JBC_VA_(family name of participant)_(organization of participant)_(month+date).zip
(ex. JBC_VA_KOBAYASHI_NMRI_1020.zip ) then upload it to the FTP server.
The deadline for submission is November 1, 2015.
Case_1.3a-9_20151015.zip
Three PNG files in ./Figures/Vortex_View/ are updated on Oct. 15, 2015. The figures in the Tokyo_2015_Vortex_Analysis.pdf included in the archive are also updated.

Note: a positive (+) sinkage value is defined upwards and a positive (+) trim value is defined bow up.

Submission Instructions:

• [Identifier] should be [Institute Name]-[Solver Name]. For example, if your institute is NMRI and solver is SURFv7, identifier should be NMRI-SURFv7.
• Identifier in the Figure should be [Institute Name]/[Solver Name]. For example, if your institute is NMRI and solver is SURFv7, identifier should be NMRI/SURFv7.
• All figures should be in black and white.
• Authors may change the contour levels for turbulence quantities for better qualitative comparison.

All quantities are non-dimensionalized by denstiy of water ($\rho$), ship speed ($U$), and length between parpendiculars ($L_{PP}$): \begin{align*} F_r = \frac{U}{\sqrt{g \cdot L_{PP}}}, \quad R_e = \frac{U \cdot L_{PP}}{\nu} \end{align*} where $g$ is the gravitational acceleration and $\nu$ is the kinematic viscosity.